Compressed Detection via Manifold Learning
نویسندگان
چکیده
In many imaging applications such as Computed Tomography (CT) in medical imaging and Synthetic Aperture Radar (SAR) imaging, the collected raw data, residing in R , of the receiver or detector can be modeled as data lying in the Fourier space of the target reflectivity function. The magnitude of the reflectivity is considered as the image of the target, and we are often interested in detecting specific features in the image, e.g. tumor in medical imaging and military weapons in SAR imaging. A natural way to achieve this goal is to form an image in R , where N > M , and detect the feature in the spatial domain. Recent development of a theory in [1] states that under certain conditions, random linear projections, Φ : R 7→ R, guarantees, with high probability, that all pairwise Euclidean and geodesic distances between points on M ⊂ R are well preserved under the mapping Φ. This made us wonder if the geodesic distances of the original image, R , and the corresponding raw data, R , in SAR imaging were also reasonably preserved. Motivated by satisfactory results of simple tests to check this, which will be discussed in more detail later, we tried to detect features directly from the lower dimensional, or compressed, SAR raw data, without involving any image reconstruction step. In this report, manifold learning techniques are applied to reduce the dimension of the raw data, and is followed by a detection step to achieve our goal. The theoretical framework will be discussed later in more detail. To our best knowledge, there has not yet been a successful image detection or classification algorithm that takes advantage of this framework and works directly on the domain where the raw data resides in. Since existing algorithms work in the spatial domain, the algorithms first have to transform the raw data to the spatial domain. This transformation step could be time consuming, and in general results in loss of information. Also, working with M dimensional data will be computationally less demanding. Thus, it is interesting to look at the problem of working directly on the raw data. The rest of the report is structured as follows. First, technical background such as the theoretical framework mentioned above, the Laplacian Eigenmaps as a method of dimensionality reduction, and semi-supervised learning algorithm will be discussed. Carrying on, experimental results will be presented. Finally, we will conclude this report by giving discussion on the challenges and future works.
منابع مشابه
Deblocking Joint Photographic Experts Group Compressed Images via Self-learning Sparse Representation
JPEG is one of the most widely used image compression method, but it causes annoying blocking artifacts at low bit-rates. Sparse representation is an efficient technique which can solve many inverse problems in image processing applications such as denoising and deblocking. In this paper, a post-processing method is proposed for reducing JPEG blocking effects via sparse representation. In this ...
متن کاملImage alignment via kernelized feature learning
Machine learning is an application of artificial intelligence that is able to automatically learn and improve from experience without being explicitly programmed. The primary assumption for most of the machine learning algorithms is that the training set (source domain) and the test set (target domain) follow from the same probability distribution. However, in most of the real-world application...
متن کاملInvertible Nonlinear Dimensionality Reduction via Joint Dictionary Learning
This paper proposes an invertible nonlinear dimensionality reduction method via jointly learning dictionaries in both the original high dimensional data space and its low dimensional representation space. We construct an appropriate cost function, which preserves inner products of data representations in the low dimensional space. We employ a conjugate gradient algorithm on smooth manifold to m...
متن کاملDeep Residual Learning for Compressed Sensing CT Reconstruction via Persistent Homology Analysis
Recently, compressed sensing (CS) computed tomography (CT) using sparse projection views has been extensively investigated to reduce the potential risk of radiation to patient. However, due to the insufficient number of projection views, an analytic reconstruction approach results in severe streaking artifacts and CS-based iterative approach is computationally very expensive. To address this is...
متن کاملCompressed Learning: Universal Sparse Dimensionality Reduction and Learning in the Measurement Domain
In this paper, we provide theoretical results to show that compressed learning, learning directly in the compressed domain, is possible. In Particular, we provide tight bounds demonstrating that the linear kernel SVM’s classifier in the measurement domain, with high probability, has true accuracy close to the accuracy of the best linear threshold classifier in the data domain. We show that this...
متن کاملHuman Detection via Classification of Riemannian Manifolds
We present a new algorithm to detect humans in still images utilizing covariance matrices as object descriptors. Since these descriptors do not lie on a vector space, well known machine learning techniques are not adequate to learn the classifiers. The space of d-dimensional nonsingular covariance matrices can be represented as a connected Riemannian manifold. We present a novel approach for cl...
متن کامل